A First Principles study on Boron-doped Graphene decorated by Ni-Ti-Mg atoms for Enhanced Hydrogen Storage Performance

نویسندگان

  • Santhanamoorthi Nachimuthu
  • Po-Jung Lai
  • Ermias Girma Leggesse
  • Jyh-Chiang Jiang
چکیده

We proposed a new solid state material for hydrogen storage, which consists of a combination of both transition and alkaline earth metal atoms decorating a boron-doped graphene surface. Hydrogen adsorption and desorption on this material was investigated using density functional theory calculations. We find that the diffusion barriers for H atom migration and desorption energies are lower than for the previously designed mediums and the proposed medium can reach the gravimetric capacity of ~6.5 wt % hydrogen, which is much higher than the DOE target for the year 2015. Molecular Dynamics simulations show that metal atoms are stably adsorbed on the B doped graphene surface without clustering, which will enhance the hydrogen storage capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage.

First-principles calculations are performed to investigate the adsorption of hydrogen onto Li-decorated hybrid boron nitride and graphene domains of (BN)(x)C(1-x) complexes with x = 1, 0.25, 0.5, 0.75, 0, and B0.125C0.875. The most stable adsorption sites for the nth hydrogen molecule in the lithium-decorated (BN)(x)C(1-x) complexes are systematically discussed. The most stable adsorption sites...

متن کامل

Calcium-decorated graphene-based nanostructures for hydrogen storage.

We report a first-principles study of hydrogen storage media consisting of calcium atoms and graphene-based nanostructures. We find that Ca atoms prefer to be individually adsorbed on the zigzag edge of graphene with a Ca-Ca distance of 10 A without clustering of the Ca atoms, and up to six H(2) molecules can bind to a Ca atom with a binding energy of approximately 0.2 eV/H(2). A Ca-decorated z...

متن کامل

New Ti-decorated B40 fullerene as a promising hydrogen storage material

The newly found B40 is the first experimentally observed all-boron fullerene and has potential applications in hydrogen storage. Here we investigate the binding ability and hydrogen storage capacity of Ti-decorated B40 fullerene based on DFT calculations. Our results indicate that Ti shows excellent binding capability to B40 compared with other transition metals. The B40 fullerene coated by 6 T...

متن کامل

Hydrogen adsorption on nitrogen and boron doped graphene.

Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption proc...

متن کامل

Hydrogen storage capacity of Si-decorated B80 nanocage: firstprinciples DFT calculation and MD simulation

Hydrogen storage capacity of Si-coated B80 fullerene was investigated based on density functional theory calculations within local density approximation and generalized gradient approximation. It is found that Si atom prefer to be attached above the center of pentagon with a binding energy of -5.78 eV. It is inferred that this binding is due to the charge transfer between the Si atom and B80 ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015